Diorgano(1,3-dithiole-2-one-4,5-dithiolato)tin compounds, $\mathrm{R}_{2} \mathrm{Sn}$ (dmio) and $[\mathrm{Q}]\left[\mathrm{R}_{2} \mathrm{Sn}(\right.$ dmio $\left.) \mathrm{X}\right][\mathrm{Q}=$ onium cation; $\mathrm{R}=$ alkyl or aryl; $\mathrm{X}=$ halide or pseudohalide]: crystal structures of $\mathrm{Me}_{2} \mathrm{Sn}$ (dmio) and [$\left.\mathrm{NEt}_{4}\right]\left[\mathrm{Ph}_{2} \mathrm{SnCl}(\mathrm{dmio})\right]$

Zahid H. Chohan, R. Alan Howie, James L. Wardell *
Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE Scotland, UK

Received 14 September 1998

Abstract

Compounds, $[\mathrm{Q}]\left[\mathrm{R}_{2} \mathrm{SnX}(\mathrm{dmio})\right]$, [5: (a) $\mathrm{Q}=\mathrm{NEt}_{4}, \mathrm{R}=\mathrm{Et}, \mathrm{X}=\mathrm{Br}: \mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{Cl},\left(\right.$ b) $\mathrm{Q}=\mathrm{NEt}_{4}$, (c) $\mathrm{Q}=$ ferrocenyl$\left.\mathrm{CH}_{2} \mathrm{NMe}_{3}\right]$, and $\left[\mathrm{R}_{2} \mathrm{Sn}(\mathrm{dmio})\right]_{n}[\mathbf{6}$: (a) $\mathrm{R}=\mathrm{Ph}$, (b) $\mathrm{R}=\mathrm{Me}$, (c) $\mathrm{R}=\mathrm{Et}(\mathrm{d}) \mathrm{R}=\mathrm{Bu}]$ (dmio $=1,3$-dithiole-2-one-4,5-dithiolate), have been prepared from $\left[\mathrm{Q}_{2}\left[\mathrm{Zn}(\mathrm{dmio})_{2}\right]\right.$ and $\mathrm{R}_{2} \mathrm{SnX}_{2}$; compounds $\left[5: \mathrm{Q}=\mathrm{NEt}_{4} ; \mathrm{R}=\mathrm{Ph}\right.$; (d) $\mathrm{X}=\mathrm{Br}$, (e) $\mathrm{X}=\mathrm{I}$, (f) $\left.\mathrm{X}=\mathrm{NCS}\right]$ have been obtained by halide/pseudohalide exchange reactions from the chloride using NaX ($\mathrm{X}=\mathrm{Br}$, I or NCS). X-ray crystallography revealed that $\mathbf{6 b}$ is six-coordinate in the solid state, as a result of intermolecular $\mathrm{Sn}-\mathrm{O}$ interactions [$\mathrm{Sn}-\mathrm{O}^{\mathbf{i}}=2.654(6) \AA$ A , which link the molecules into chains, and weak $\mathrm{Sn}-\mathrm{S}$ interactions $\left[\mathrm{Sn}-\mathrm{S}^{\mathrm{ii}}=3.649(3) \AA\right.$, which link the chains into layers. The anion in ionic 5b, as shown by X-ray crystallography, contains a distorted trigonal bipyramidal tin centre. © 1999 Elsevier Science S.A. All rights reserved.

Keywords: Tin; 1,3-Dithiole-2-one-4,5-dithiolato-; Octahedral; Trigonal bipyramidal

1. Introduction

Organotin 1,2-dithiolate complexes have featured in many studies; the ligands used include aliphatic derivatives, e.g. ${ }^{-} \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}^{-}$(edt) [1], ${ }^{-} \mathrm{SCH}_{2} \mathrm{CHMeS}^{-}$ [2], alkenyl derivatives, e.g. ${ }^{-} \mathrm{SCH}=\mathrm{CHS}^{-}$[3], ${ }^{-} \mathrm{SC}(\mathrm{CN})=\mathrm{C}(\mathrm{CN}) \mathrm{S}^{-} \quad(\mathrm{mnt}) \quad[3,4]$, aryl derivatives, ${ }^{-} \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{~S}^{-}$(bdt) [5] and 3,4-(${ }^{-}$S $)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}$ (tdt) [1b,c, $2 \mathrm{~b}, 4 \mathrm{a}, 5 \mathrm{~b}, 6]$, and heterocyclic derivatives ($1: \mathrm{C}_{3} \mathrm{~S}_{5}^{2-}$) [7] and (2: $\mathrm{C}_{3} \mathrm{OS}_{4}^{2-}$) [8]. Much of the interest has centred on syntheses and structure determinations, although the uses of the chelates in heterocyclic synthesis have become of great interest [9,10]. During the last few years, complexes of the 1,3-dithiole-2-thione-4,5-dithiolato ligand, dmit, ($1: \mathrm{C}_{3} \mathrm{~S}_{5}^{2-}$) have attracted particular attention [7]; less frequently studied have been com-

[^0]plexes of the related 1,3-dithiole-2-one-4,5-dithiolato ligand, dmio (2: $\mathrm{C}_{3} \mathrm{OS}_{4}^{2-}$)] [8].

1: $\mathrm{E}=\mathrm{S}$
2. $\mathrm{E}=\mathrm{O}$

3. $E=S$
4. $E=S$

5: $\mathrm{E}=\mathrm{O}$
6: $E=O$

Table 1
Crystal data and structure refinement

Compound	$\mathrm{Me}_{2} \mathrm{Sn}$ (dmio)	$\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Ph}_{2} \mathrm{SnCl}(\mathrm{dmio})\right]$
Empirical formula	$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{OS}_{4} \mathrm{Sn}$	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{ClNOS}_{4} \mathrm{Sn}$
Formula weight	329.05	604.89
Temperature (K)	298	298
Wavelength (A)	0.71069	0.71069
Crystal system	Orthorhombic	Triclinic
Space group	Pbcn	$P \overline{1}$
$a(\mathrm{~A})$	17.642(9)	9.456(11)
b (\AA)	7.683(4)	11.473(15)
c (A)	15.031(9)	12.476(12)
$\alpha\left({ }^{\circ}\right.$)	90	97.73(9)
$\beta\left({ }^{\circ}\right.$	90	87.59(9)
$\gamma\left({ }^{\circ}\right.$	90	95.90(10)
$V\left(\AA^{3}\right)$	2037.4(19)	1333(3)
Z	8	2
$\mathrm{D}_{\text {calc. }}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	2.145	1.507
Absorption coefficient (mm^{-1})	3.25	1.38
Max/min transmission factors	0.1211/0.4265	None
$F(000)$	1264	628
Crystal size (mm)	$0.65 \times 0.6 \times 0.1$	$0.6 \times 0.36 \times 0.16$
Theta range for data collection (${ }^{\circ}$)	Max. 30	Max. 25
Index ranges	$0 \leq h \leq 24$	$-11 \leq h \leq 11$
	$0 \leq k \leq 10$	$-13 \leq k \leq 13$
	$0 \leq l \leq 21$	$0 \leq l \leq 14$
Reflections collected	3404	4740
Independent reflections	2656	4477
Observed reflections [$F>4 \sigma(F)$]	2055	3828
$R_{\text {int }}$	0.0015	0.001
Refinement method	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}
Number of parameters	120	258
Goodness-of-fit (S)	0.8964	1.31
Final R indices	$\begin{aligned} & R=0.066[F>4 \sigma(F)] \\ & w R=0.072 \end{aligned}$	$\begin{aligned} & R=0.051[F>4 \sigma(F)] \\ & w R=0.055 \end{aligned}$
Final weighting scheme	$w=1 /\left(\sigma^{2} F+0.007046 F^{2}\right)$	$w=1 /\left(\sigma^{2} F+0.001791 F^{2}\right)$
Residual diffraction	2.56 (0.92 ${ }^{\text {a }}$ A from Sn)	1.13 (0.96 \AA from Sn)
Max/min (e^{-3})	-2.62	-1.22

${ }^{\text {a }}$ One of four peaks of roughly equal intensity distant $0.77-0.92 \AA$ from Sn .

While full reports of the synthesis and structures of the ionic mono-dmit complexes, (3: $\mathrm{Q}=$ cation; $\mathrm{X}=$ halide or pseudohalide) [7b,c] and polymeric species (4: $\mathrm{R}=$ simple alkyl or aryl) [7a] have been published, only preliminary reports, concentrating on structural aspects, have been made on two mono-dmio complexes (5f: $\mathrm{Q}=\mathrm{NEt}_{4}, \mathrm{X}=\mathrm{NCS}, \mathrm{R}=\mathrm{Ph}$) and (5a: $\mathrm{Q}=\mathrm{NEt}_{4}$, $\mathrm{X}=\mathrm{Br}, \mathrm{R}=\mathrm{Et})[8 \mathrm{~b}, \mathrm{c}] . \mathrm{We}$ wish now to report on the neutral species [6: (a) $\mathrm{R}=\mathrm{Ph}$, (b) $\mathrm{R}=\mathrm{Me}$, (c) $\mathrm{R}=\mathrm{Et}$, (d) $\mathrm{R}=\mathrm{Bu}$] as well as further information on the ionic complexes (5: $\mathrm{Q}=\mathrm{NEt}_{4}$ or ferrocenylCH $\mathrm{NMe}_{3} ; \mathrm{X}=$ $\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ or $\mathrm{NCS} ; \mathrm{R}=\mathrm{Et}$ or Ph). Comparisons of the structures of the related dmio and dmit complexes are also made.

2. Experimental

Melting points were measured using a Kofler hotstage microscope and are uncorrected. NMR spectra
were obtained on a Bruker 250 MHz instrument. Ten second pulse delays were utilised in the acquisition of the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of the dmio compounds. IR spectra were recorded on Phillips analytical PU900 and Nicolet 205 Fourier-transform instruments.

Zincate salts, $[\mathrm{Q}]_{2}\left[\mathrm{Zn}(\mathrm{dmio})_{2}\right],\left[\mathrm{Q}=\mathrm{NEt}_{4}\right.$, or ferrocenylmethyl(trimethyl)ammonium] were obtained by published procedures $[11,12] ; \mathrm{Et}_{2} \mathrm{SnBr}_{2}, \mathrm{Me}_{2} \mathrm{SnCl}_{2}$, $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$, and $\mathrm{Ph}_{2} \mathrm{SnCl}_{2}$ were obtained from appropriate tetraorganostannanes and stannic halides and had physical properties in agreement with published values [13].

2.1. $\left[N E t_{4}\right]\left[E t_{2} \operatorname{SnBr}(\right.$ dmio $\left.)\right](5 a)$

A solution of $\mathrm{Et}_{2} \mathrm{SnBr}_{2}(0.67 \mathrm{~g}, 2.0 \mathrm{mmol})$ in MeOH $(20 \mathrm{ml})$ was added to a stirred suspension of $\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{Zn}(\mathrm{dmio})_{2}\right](0.69 \mathrm{~g}, 1.0 \mathrm{mmol})$ in MeOH (20 ml). After 3 h , the orange precipitate was collected and recrystallised from MeOH as a red-brown crystalline

(a)
$\mathrm{R}_{2} \mathrm{SnX}_{2}$
QX
QX

Scheme 1.
solid, m.p. $142-143^{\circ} \mathrm{C}$; yield $0.75 \mathrm{~g}, 66 \%$. Analysis: Found: C, 31.9; H, 5.1; N, 2.6. Calculated for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{BrNOS}_{4} \mathrm{Sn}: \mathrm{C}, 31.8 ; \mathrm{H}, 5.3 ; \mathrm{N}, 2.5 \%$.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 1665, 1612, 1475, 1451. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 250 \mathrm{MHz}\right) \delta: 1.20[\mathrm{t}, 6 \mathrm{H}, J(\mathrm{H}-\mathrm{H}) 8.1 \mathrm{~Hz}$, $\left.J\left({ }^{119,117} \mathrm{Sn}-{ }^{1} \mathrm{H}\right) 128,122 \mathrm{~Hz},\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Sn}\right)\right], 1.40[\mathrm{tt}, 12$ $\left.\mathrm{Hz}, J(\mathrm{H}-\mathrm{H}) 7.2 \mathrm{~Hz}, J(\mathrm{H}-\mathrm{N}) 1.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right], 1.56[\mathrm{q}$, $\left.4 \mathrm{H}, J(\mathrm{H}-\mathrm{H}) 8.1 \mathrm{~Hz}, J\left({ }^{119,117} \mathrm{Sn}-{ }^{1} \mathrm{H}\right) 59 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Sn}\right]$, $3.3\left[\mathrm{q}, 8 \mathrm{H}, J(\mathrm{H}-\mathrm{H}) 7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right] .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-\right.$ $\left.\mathrm{d}_{6}, 62.9 \mathrm{MHz}\right) \delta: 7.5\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right], 11.8\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)\right.$ $\left.40.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Sn}\right], 23.5\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 535,510 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{Sn}\right], \quad 52.7\left[\mathrm{CH}_{2} \mathrm{~N}\right], \quad 119.4[\mathrm{C}=\mathrm{C}], 192.5[\mathrm{C}=\mathrm{O}] .{ }^{119} \mathrm{Sn}$ $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}, 93.1 \mathrm{MHz}\right) \delta:-69.7$.

2.2. $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Ph}_{2} \mathrm{SnCl}(\right.$ dmio $\left.)\right]$ (5b)

This compound was similarly prepared from $\mathrm{Ph}_{2} \mathrm{SnCl}_{2}$ $(3.45 \mathrm{~g}, \quad 10.1 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{ml})$ and $\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{Zn}(\mathrm{dmio})_{2}\right](3.45 \mathrm{~g}, 5.0 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{ml})$ and was recrystallised from MeOH ; red-brown crystals, m.p. $133-135^{\circ} \mathrm{C}$; yield $5.50 \mathrm{~g}, 88 \%$. Analysis: Found: C, 44.1; H, 5.0; N, 2.4. Calculated for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{ClNOS}_{4} \mathrm{Sn}: \mathrm{C}$, 44.6; H, 4.9; N, 2.3\%.

IR (KBr, cm^{-1}) 1664, 1614, 1458. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{CO}-\right.$ $\left.\mathrm{d}_{6}, 250 \mathrm{MHz}\right) \delta: 1.34[\mathrm{tt}, 12 \mathrm{~Hz}, J(\mathrm{H}-\mathrm{H}) 7.2 \mathrm{~Hz}, J(\mathrm{H}-\mathrm{N})$ $1.85 \mathrm{~Hz}, \mathrm{Me}], 3.41\left[\mathrm{q}, 8 \mathrm{H}, J(\mathrm{H}-\mathrm{H}) 7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right]$, $7.40[\mathrm{~m}, 6 \mathrm{H}, m-\mathrm{H}+p-\mathrm{H}], 8.11\left[\mathrm{~m}, 4 \mathrm{H}, J\left({ }^{119,117} \mathrm{Sn}-{ }^{1} \mathrm{H}\right) \mathrm{ca}\right.$. $80 \mathrm{~Hz}, o-\mathrm{H}] .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{CO}-\mathrm{d}_{6}, 62.9 \mathrm{MHz}\right) \delta$: $7.6[\mathrm{Me}], \quad 52.9\left[\mathrm{~J}(\mathrm{C}-\mathrm{N}) \quad 6.2 \mathrm{~Hz}, \quad \mathrm{CH}_{2}\right], \quad 119.4[\mathrm{C}=\mathrm{C}]$, $128.7\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) \quad 82.5, \quad 79.1 \mathrm{~Hz}, \quad m-\mathrm{C}\right]$, $129.6\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 16.9 \mathrm{~Hz}, p-\mathrm{C}\right], 136.6\left[J\left({ }^{119,117} \mathrm{Sn}-\right.\right.$ $\left.\left.{ }^{13} \mathrm{C}\right) 611,585 \mathrm{~Hz}, o-\mathrm{C}\right], 148.3\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 798,767\right.$ $\mathrm{Hz}, i-\mathrm{C}], 192.0[\mathrm{C}=\mathrm{O}] .{ }^{119} \mathrm{Sn}\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 93.1 \mathrm{MHz}\right) \delta$: -178.5 .

2.3. $\left[\mathrm{FcCH}_{2} \mathrm{NMe}_{3}\right]\left[\mathrm{Ph}_{2} \mathrm{SnCl}(\right.$ dmio $\left.)\right](5 \mathrm{c})$

This compound was prepared similarly from $\mathrm{Ph}_{2} \mathrm{SnCl}_{2}$ $(0.34 \mathrm{~g}, \quad 1.00 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{ml})$ and
$\left[\mathrm{FcCH}_{2} \mathrm{NMe}_{3}\right]_{2}\left[\mathrm{Zn}(\text { dmio })_{2}\right](0.47 \mathrm{~g}, 0.50 \mathrm{mmol})$ in MeOH $(20 \mathrm{ml})$ and was recrystallised from MeOH ; red-brown crystals, m.p. $134-136^{\circ} \mathrm{C}$; yield $0.23 \mathrm{~g}, 62 \%$. Analysis: Found: C, 46.3; H, 3.7; N, 1.8. Calculated for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{ClFeNOS}_{4} \mathrm{Sn}: \mathrm{C}, 46.6 ; \mathrm{H}, 4.0 ; \mathrm{N}, 1.9 \%$

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 1668, 1603, 1475. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-\right.$ $\left.\mathrm{d}_{6}, 250 \mathrm{MHz}\right) \delta: 2.89[\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}], 4.23[\mathrm{~s}, 5 \mathrm{H}$, unsubstituted cp-H], $4.36[\mathrm{~s}, 4 \mathrm{H}$, substituted $\mathrm{cp}-\mathrm{H}], 4.47[\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right], 7.42[\mathrm{~m}, 6 \mathrm{H}, m-\mathrm{H}+p-\mathrm{H}], 7.92\left[\mathrm{~m}, 4 \mathrm{H}, J\left({ }^{119,117} \mathrm{Sn}-\right.\right.$ $\left.{ }^{1} \mathrm{H}\right)$ ca. $\left.80 \mathrm{~Hz}, o-\mathrm{H}\right] .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 62.9 \mathrm{MHz}\right)$ $\delta: \quad 53.0[J(\mathrm{C}-\mathrm{N}) \quad 7.8 \mathrm{~Hz}, \quad \mathrm{Me}], \quad 67.1\left[\mathrm{CH}_{2}\right]$, 70.6[unsubstituted cp-C], 71.7, 73.6, 74.7[substituted cpC], $119.4[\mathrm{C}=\mathrm{C}], 130.1\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 82.2,79.0 \mathrm{~Hz}\right.$, m-C], $130.9\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) \quad 17.5 \quad \mathrm{~Hz}, \quad p-\mathrm{C}\right]$, $136.9\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) \quad 61.8, \quad 59.0 \quad \mathrm{~Hz}, \quad o-\mathrm{C}\right]$, $147.5\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 843\right.$, $\left.806 \mathrm{~Hz}, i-\mathrm{C}\right], 191.3[\mathrm{C}=\mathrm{O}]$. ${ }^{119} \mathrm{Sn}\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}, 93.1 \mathrm{MHz}\right) \delta:-168.3$.

2.4. $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Ph}_{2} \mathrm{SnBr}(\right.$ dmio $\left.)\right]$ (5d)

A solution of $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Ph}_{2} \mathrm{SnCl}(\right.$ dmio $\left.)\right](2.00 \mathrm{~g}, 3.23$ $\mathrm{mmol})$ and $\mathrm{NaBr}(1.50 \mathrm{~g}, 14.6 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{ml})$ was agitated in an ultrasonic bath for 1 h . The dark-orange precipitate was collected and recrystallised from MeOH ; red-brown crystals, m.p. $118-120^{\circ} \mathrm{C}$; yield 1.89 g, 86%. Analysis: Found: C, 41.3; H, 4.4; N, 2.1. Calculated for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{BrNOS}_{4} \mathrm{Sn}: \mathrm{C}, 41.7 ; \mathrm{H}, 4.5 ; \mathrm{N}$, 2.1\%.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 1663, 1613, 1465. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-\right.$ $\left.\mathrm{d}_{6}, 250 \mathrm{MHz}\right) \delta: 1.14[\mathrm{tt}, 12 \mathrm{~Hz}, J(\mathrm{H}-\mathrm{H}) 7.2 \mathrm{~Hz}, J(\mathrm{H}-\mathrm{N})$ $1.8 \mathrm{~Hz}, \mathrm{Me}, 3.16\left[\mathrm{q}, 8 \mathrm{H}, J(\mathrm{H}-\mathrm{H}) 7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right], 7.43[\mathrm{~m}$, $6 \mathrm{H}, m-\mathrm{H}+p-\mathrm{H}], 7.91\left[\mathrm{~m}, 4 \mathrm{H}, J\left({ }^{119,117} \mathrm{Sn}-{ }^{1} \mathrm{H}\right) \mathrm{ca} .80 \mathrm{~Hz}\right.$, $o-\mathrm{H}] .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 62.9 \mathrm{MHz}\right) \delta: 8.8[\mathrm{Me}]$, $53.0\left[J(\mathrm{C}-\mathrm{N}) \quad 5.9 \mathrm{~Hz}, \quad \mathrm{CH}_{2}\right], \quad 118.5[\mathrm{C}=\mathrm{C}]$, $130.1\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) \quad 82.3,79.0 \quad \mathrm{~Hz}, \quad m-\mathrm{C}\right]$, $131.0\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 17.0 \mathrm{~Hz}, p-\mathrm{C}\right]$, $136.9\left[J\left({ }^{119,117} \mathrm{Sn}-\right.\right.$ $\left.\left.{ }^{13} \mathrm{C}\right) 60.0,58.5 \mathrm{~Hz}, o-\mathrm{C}\right], 147.6\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 828,791\right.$ $\mathrm{Hz}, i-\mathrm{C}], 191.2[\mathrm{C}=\mathrm{O}] .{ }^{119} \mathrm{Sn}\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}, 93.1 \mathrm{MHz}\right) \delta$: -172.2.

Fig. 1. Atom arrangement for the anion of $\mathbf{5 b}$. Probability ellipsoids drawn at 40%.

2.5. $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Ph}_{2} \mathrm{SnI}(\mathrm{dmio})\right](\mathbf{5 e})$

This compound was similarly prepared from $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Ph}_{2} \mathrm{SnCl}(\right.$ dmio $\left.)\right],(0.50 \mathrm{~g}, 0.81 \mathrm{mmol})$ and NaI ($0.30 \mathrm{~g}, 2.0 \mathrm{mmol}$) in $\mathrm{MeOH}(35 \mathrm{ml})$ and was recrystallised from MeOH ; red-brown crystals, m.p. 147$149^{\circ} \mathrm{C}$; yield $0.46 \mathrm{~g}, 80 \%$. Analysis: Found: C, 38.6 ; H, 4.2; N, 4.1. Calculated for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{INOS}_{4} \mathrm{Sn}: \mathrm{C}, 38.9$; H, 4.3; N, 2.0\%.

IR ($\mathrm{KBr}, \quad \mathrm{cm}^{-1}$) 1661, 1614, 1470. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 250 \mathrm{MHz}\right) \delta: 1.15[\mathrm{tt}, 12 \mathrm{~Hz}, J(\mathrm{H}-\mathrm{H}) 7.2$ $\mathrm{Hz}, J(\mathrm{H}-\mathrm{N}) 1.7 \mathrm{~Hz}, \mathrm{Me}, 3.20[\mathrm{q}, 8 \mathrm{H}, J(\mathrm{H}-\mathrm{H}) 7.2 \mathrm{~Hz}$,

Table 2
Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{5 b}$

Bond lengths $\left(\begin{array}{l}\text { A }\end{array}\right.$			
Sn-S1	$2.626(2)$	$\mathrm{Sn}-\mathrm{S} 4$	$2.463(2)$
$\mathrm{Sn}-\mathrm{Cl}$	$2.524(2)$	$\mathrm{Sn}-\mathrm{C} 4$	$2.142(7)$
$\mathrm{Sn}-\mathrm{C} 10$	$2.150(7)$	$\mathrm{C} 1-\mathrm{S} 1$	$1.734(7)$
C1-S2	$1.751(7)$	$\mathrm{C} 3-\mathrm{S} 2$	$1.745(9)$
C2-S3	$1.750(7)$	$\mathrm{C} 3-\mathrm{S} 3$	$1.780(9)$
C2-S4	$1.740(8)$	$\mathrm{C} 3-\mathrm{O}$	$1.204(9)$
C2-C1	$1.357(10)$		
Bond angles $\left(^{\circ}\right)$			
S4-Sn-S1	$84.2(1)$	$\mathrm{C} 1-\mathrm{Sn}-\mathrm{S} 1$	$165.4(1)$
Cl-Sn-S4	$82.1(1)$	$\mathrm{C} 4-\mathrm{Sn}-\mathrm{S} 1$	$95.8(2)$
C4-Sn-S4	$114.2(2)$	$\mathrm{C} 4-\mathrm{Sn}-\mathrm{C} 1$	$94.4(2)$
C10-Sn-S1	$91.5(2)$	$\mathrm{C} 10-\mathrm{Sn}-\mathrm{S} 4$	$127.9(2)$
C10-Sn-C1	$92.9(2)$	$\mathrm{C} 10-\mathrm{Sn}-\mathrm{C} 4$	$117.9(3)$
C1-S1-Sn	$96.1(2)$	$\mathrm{C} 3-\mathrm{S} 2-\mathrm{C} 1$	$97.8(4)$
C3-S3-C2	$97.3(4)$	$\mathrm{C} 2-\mathrm{S} 4-\mathrm{Sn}$	$100.0(2)$
C2-C1-S2	$116.7(5)$	$\mathrm{S} 4-\mathrm{C} 2-\mathrm{S} 3$	$117.496)$
C1-C2-S3	$116.3(6)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{S} 4$	$126.4(6)$
S3-C3-S2	$111.9(4)$	$\mathrm{O}-\mathrm{C} 3-\mathrm{S} 2$	$124.6(8)$
O-C3-S3	$123.5(7)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$126.4(6)$
S2-C1-S1	$116.9(4)$		

$\left.\mathrm{CH}_{2} \mathrm{~N}\right], \quad 7.47[\mathrm{~m}, \quad 6 \mathrm{H}, \quad m-\mathrm{H}+p-\mathrm{H}], \quad 7.82[\mathrm{~m}, \quad 4 \mathrm{H}$, $\left.J\left({ }^{119,117} \mathrm{Sn}-{ }^{1} \mathrm{H}\right) \mathrm{ca} .80 \mathrm{~Hz}, o-\mathrm{H}\right] .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}\right.$, $62.9 \mathrm{MHz}) \delta: 8.9[\mathrm{Me}], 53.0\left[J(\mathrm{C}-\mathrm{N}) 5.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right]$, $118.5[\mathrm{C}=\mathrm{C}], 130.1\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 82.3,79.0 \mathrm{~Hz}, m-\mathrm{C}\right]$, $131.0\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 17.0 \mathrm{~Hz}, p-\mathrm{C}\right], 136.9\left[J\left({ }^{119,117} \mathrm{Sn}-\right.\right.$ $\left.\left.{ }^{13} \mathrm{C}\right) 60.6,58.9 \mathrm{~Hz}, o-\mathrm{C}\right], 145.9\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 844\right.$, $806 \mathrm{~Hz}, i-\mathrm{C}], 191.4[\mathrm{C}=\mathrm{O}] .{ }^{119} \mathrm{Sn}\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}, 93.1 \mathrm{MHz}\right)$ $\delta:-159.4$.

2.6. $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Ph}_{2} \operatorname{Sn}(\mathrm{NCS}) d\right.$ mio $\left.)\right](5 f)$

This compound was similarly prepared from $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Ph}_{2} \mathrm{SnCl}(\right.$ dmio $\left.)\right], \quad(2.00 \mathrm{~g}, \quad 3.23 \mathrm{mmol})$ and

Table 3
Selected structural details of $[\mathrm{Q}]\left[\mathrm{R}_{2} \mathrm{SnX}(\mathrm{dmio})\right]$ compound 5

R	Ph^{a}		$\mathrm{Et}[8 \mathrm{~b}]$ Br
X	Cl	$\mathrm{Ph}^{\mathrm{a}}[8 \mathrm{c}]$ NCS	
$\mathrm{Sn}-\mathrm{X}$	$2.524(2)$	$2.876(2)$	$2.240(6)$
$\mathrm{Sn}-\mathrm{C}(\mathrm{A})$	$2.142(7)$	$2.093(8)$	$2.133(7)$
$\mathrm{Sn}-\mathrm{C}(\mathrm{B})$	$2.150(7)$	$2.093(8)$	$2.162(7)$
$\mathrm{Sn}-\mathrm{S}(\mathrm{eq})$	$2.463(2)$	$2.465(3)$	$2.433(2)$
$\mathrm{Sn}-\mathrm{S}(\mathrm{ax})$	$2.626(2)$	$2.567(3)$	$2.583(2)$
$\mathrm{X}-\mathrm{Sn}-\mathrm{S}(\mathrm{ax})$	$165.4(1)$	$166.65(9)$	$166.4(2)$
$\mathrm{X}-\mathrm{Sn}-\mathrm{C}(\mathrm{A})$	$94.4(2)$	$87.6(3)$	$90.7(2)$
$\mathrm{X}-\mathrm{Sn}-\mathrm{C}(\mathrm{B})$	$92.9(2)$	$87.6(3)$	$91.7(2)$
$\mathrm{X}-\mathrm{Sn}-\mathrm{S}(\mathrm{eq})$	$82.1(1)$	$79.86(8)$	$80.0(2)$
$\mathrm{C}(\mathrm{A})-\mathrm{Sn}-\mathrm{C}(\mathrm{B})$	$117.9(3)$	$138.0(6)$	$116.1(2)$
$\mathrm{C}(\mathrm{A})-\mathrm{Sn}-\mathrm{S}(\mathrm{eq})$	$114.2(2)$	$110.1(3)$	$119.8(2)$
$\mathrm{C}(\mathrm{B})-\mathrm{Sn}-\mathrm{S}(\mathrm{eq})$	$127.9(2)$	$110.1(3)$	$123.5(2)$
$\mathrm{C}(\mathrm{A})-\mathrm{Sn}-\mathrm{S}(\mathrm{ax})$	$95.8(2)$	$97.1(3)$	$95.7(2)$
$\mathrm{C}(\mathrm{B})-\mathrm{Sn}-\mathrm{S}(\mathrm{ax})$	$91.5(2)$	$97.1(3)$	$96.1(2)$
$\mathrm{S}(\mathrm{eq})-\mathrm{Sn}-\mathrm{S}(\mathrm{ax})$	$86.2(1)$	$86.78(9)$	$86.47(6)$

[^1]Table 4
Comparison of $\delta^{119} \mathrm{Sn}$ values of $\mathbf{3}$ and $\mathbf{5}[\mathrm{Q}]\left[\mathrm{Ph}_{2} \mathrm{SnX}\left(\mathrm{C}_{3} \mathrm{~S}_{4} \mathrm{E}\right)\right]$

X	$\begin{aligned} & \delta^{119} \mathrm{Sn} \\ & E=\mathrm{O} \end{aligned}$	$\begin{aligned} & \delta^{119} \mathrm{Sn} \\ & E=\mathrm{S} \end{aligned}$	$\Delta \delta^{119} \mathrm{Sn}^{\mathrm{a}}$
(a) $Q=N E t_{4}$			
Cl	-178.5	-143.2	-35.3
Br	-172.2	-149.6	-23.3
I	- 179.4	-158.2	-21.2
NCS	- 182.4	-162.9	-19.5
(b) $Q=\mathrm{Fc} \mathrm{CH}_{2} \mathrm{Nme}_{3}$			
Cl		-145.8	-17.5
		$-146.3($	

$\mathrm{NaSCN} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.59 \mathrm{~g}, 5.0 \mathrm{mmol})$ in $\mathrm{MeOH}(35 \mathrm{ml})$ and was recrystallised from $\mathrm{MeOH} / \mathrm{Me}_{2} \mathrm{CO}$; red-brown crystals, m.p. $103-105^{\circ} \mathrm{C}$; yield $1.78 \mathrm{~g}, 86 \%$. Analysis: Found: C, 45.3; H, 4.8; N, 4.1. Calculated for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OS}_{5} \mathrm{Sn}: \mathrm{C}, 44.9 \mathrm{H}, 4.7 ; \mathrm{N}, 4.4 \%$

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 2057, 1667, 1620, 1475, 1458. ${ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 250 \mathrm{MHz}\right) \delta: 1.14[\mathrm{tt}, 12 \mathrm{~Hz}, J(\mathrm{H}-\mathrm{H})$ $7.5 \mathrm{~Hz}, J(\mathrm{H}-\mathrm{N}) 1.7 \mathrm{~Hz}, \mathrm{Me}], 3.17[\mathrm{q}, 8 \mathrm{H}, J(\mathrm{H}-\mathrm{H}) 7.5$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{~N}\right], 7.46[\mathrm{~m}, 6 \mathrm{H}, m-\mathrm{H}+p-\mathrm{H}], 7.83[\mathrm{~m}, ~ 4 \mathrm{H}$, $J\left({ }^{119,117} \mathrm{Sn}-{ }^{1} \mathrm{H}\right)$ ca. $\left.80 \mathrm{~Hz}, o-\mathrm{H}\right] .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}\right.$, $62.9 \mathrm{M} \mathrm{Hz}) \delta: 8.8[\mathrm{Me}], 53.1\left[J(\mathrm{C}-\mathrm{N}) 6.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right]$, $118.1[\mathrm{C}=\mathrm{C}], 130.4\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 82.5,79.2 \mathrm{~Hz}, m-\mathrm{C}\right]$, $133.6[\mathrm{NCS}], \quad 131.0\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) \quad 17.0 \quad \mathrm{~Hz}, \quad p-\mathrm{C}\right]$, $136.8\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) \quad 60.6, \quad 58.9 \mathrm{~Hz}, \quad o-\mathrm{C}\right], \quad 145.9$ [$\left.J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 869,818 \mathrm{~Hz}, i-\mathrm{C}\right], 191.4[\mathrm{C}=\mathrm{O}] .{ }^{119} \mathrm{Sn}$ $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}, 93.1 \mathrm{M} \mathrm{Hz}\right) \delta:-182.4$.

3. $\mathbf{R}_{2} \operatorname{Sn}($ dmio) compounds

A solution of $\mathrm{R}_{2} \mathrm{SnCl}_{2} \quad(2.00 \mathrm{mmol})$ and $\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{Zn}(\mathrm{dmio})_{2}\right](0.68 \mathrm{~g}, 1.0 \mathrm{mmol})$ in $\mathrm{Me}_{2} \mathrm{CO}(30$ $\mathrm{ml})$ was stirred for $10-15 \mathrm{~min}$. Water (60 ml) was added with vigorous stirring. Addition of petroleum ether (b.p. $40-60^{\circ} \mathrm{C}, 15 \mathrm{ml}$), with scraping the walls of the reaction vessel, resulted in the deposition of a brown to red coloured solid, which was collected and refluxed for 1 h in $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}(2: 1 \mathrm{v}: \mathrm{v}, 50 \mathrm{ml}$), filtered and dried under vacuum at $100^{\circ} \mathrm{C}$.

3.1. $P h_{2} \operatorname{Sn}(d m i o)$ ($\boldsymbol{\sigma a}$)

This compound was sparingly soluble in organic solvents and was isolated as an orange-red powder. The product was purified by repeated washings with water and small quantities of $\mathrm{Me}_{2} \mathrm{CO}$; m.p. $197-200^{\circ} \mathrm{C}$; yield $0.81 \mathrm{~g}, 75 \%$. Analysis: Found: C, 39.9; H, 2.1. Calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{NOS}_{4} \mathrm{Sn}: \mathrm{C}, 39.7$; H 2.2%.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 1662, 1606, 1475. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 62.9 \mathrm{MHz}\right) \delta: 118.7[\mathrm{C}=\mathrm{C}], 130.8\left[J\left({ }^{119,117} \mathrm{Sn}-\right.\right.$
$\left.{ }^{13} \mathrm{C}\right) 80.7$, $\left.77.6 \mathrm{~Hz}, m-\mathrm{C}\right]$, $131.9\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 17.0\right.$ $\mathrm{Hz}, p-\mathrm{C}], 137.6\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 61.2,58.8 \mathrm{~Hz}, o-\mathrm{C}\right]$, $147.6\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 798,767 \mathrm{~Hz}, i-\mathrm{C}\right], 191.3[\mathrm{C}=\mathrm{O}]$. ${ }^{119} \mathrm{Sn}\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}, 93.1 \mathrm{MHz}\right) \delta:-236.9$.

3.2. $\mathrm{Me}_{2} \operatorname{Sn}($ dmio) (6b)

This compound was obtained after recrystallisation from MeOH as an orange microcrystalline solid, m.p. $187-189^{\circ} \mathrm{C}$; yield $0.26 \mathrm{~g}, 40 \%$. Analysis: Found: C, 18.7; H, 1.7. Calculated for $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{OS}_{4} \mathrm{Sn}: \mathrm{C}, 18.2 ; \mathrm{H}$, 1.8\%.

IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1662,1610,1475,1467,1452 .{ }^{1} \mathrm{H}-$ NMR ($\left.\mathrm{Me}_{2} \mathrm{SO}-d_{6}, 250 \mathrm{MHz}\right) \delta: 1.00\left[\mathrm{~s}, J\left({ }^{119,117} \mathrm{Sn}-{ }^{1} \mathrm{H}\right)\right.$ 82.3, $78.8 \mathrm{~Hz}, \mathrm{Me}] .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 62.9 \mathrm{MHz}\right)$ $\delta: 13.8\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 617,598 \mathrm{~Hz}, \mathrm{Me}\right], 118.6[\mathrm{C}=\mathrm{C}]$, $192.5[\mathrm{C}=\mathrm{O}] .{ }^{119} \mathrm{Sn}\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}, 93.1 \mathrm{MHz}\right) \delta:-37.5$.

3.3. $E t_{2} \operatorname{Sn}(\mathrm{dmio})(\boldsymbol{c c})$

This compound was obtained after recrystallisation from MeOH as an orange-red crystalline solid, m.p. $196-198^{\circ} \mathrm{C}$; yield $0.55 \mathrm{~g}, 75 \%$. Analysis: Found: C, 23.9, H, 2.9. Calculated for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{OS}_{4} \mathrm{Sn}: \mathrm{C}, 23.5$; H , 2.8%.

IR ($\mathrm{KBr}, \quad \mathrm{cm}^{-1}$) 1666, 1612, 1477. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}, 250 \mathrm{MHz}\right) \delta: 1.32[\mathrm{t}, J(\mathrm{H}-\mathrm{H}) 7.8 \mathrm{~Hz}$, $\left.J\left({ }^{119,117} \mathrm{Sn}-{ }^{1} \mathrm{H}\right) 128,122 \mathrm{MHz}, \mathrm{Me}\right], 1.54[\mathrm{q}, J(\mathrm{H}-\mathrm{H}) 7.8$ $\left.\mathrm{Hz}, J\left({ }^{119,117} \mathrm{Sn}-{ }^{1} \mathrm{H}\right) 59 \mathrm{~Hz}, \mathrm{CH}_{2}\right] .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right.$, $62.9 \mathrm{MHz}) \delta: 12.1\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)\right.$ 43.4 Hz , Me], $23.6\left[J\left({ }^{119,117} \mathrm{Sn}-{ }^{13} \mathrm{C}\right) 585,559 \mathrm{~Hz}, \mathrm{CH}_{2} \quad 118.8[\mathrm{C}=\mathrm{C}]\right.$, $192.9[\mathrm{C}=\mathrm{O}] .{ }^{119} \mathrm{Sn}\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}, 93.1 \mathrm{MHz}\right) \delta:-18.2$.

3.4. $B u_{2} \operatorname{Sn}(d m i o)$ ($\boldsymbol{\sigma d}$)

This compound was obtained after recrystallisation from MeOH as an orange microcrystalline solid, m.p. $178-180^{\circ} \mathrm{C}$; yield $0.51 \mathrm{~g}, 62 \%$. Analysis: Found: C, 31.9; $\mathrm{H}, 4.4$. Calculated for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{OS}_{4} \mathrm{Sn}: \mathrm{C}, 32.0$; H , 4.4\%.

IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 1673br, 1481. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}\right.$, $250 \mathrm{MHz}) \delta: 0.95[\mathrm{t}, 6 \mathrm{H}, J(\mathrm{H}-\mathrm{H}) 7.3 \mathrm{~Hz}, \mathrm{Me}], 1.38[\mathrm{~m}$, $4 \mathrm{H}, \mathrm{CH}_{2}$], $1.78\left[\mathrm{~m} .8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right] .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}-\right.$ $\left.\mathrm{d}_{6}, 62.9 \mathrm{MHz}\right) \delta: 13.4[\mathrm{Me}], 23.9,26.4,27.6,116.6[\mathrm{C}=\mathrm{C}]$, $192.6[\mathrm{C}=\mathrm{O}] .{ }^{119} \mathrm{Sn}\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}, 93.1 \mathrm{MHz}\right) \delta:-22.0$.

4. Crystal structure determinations

4.1. General

The crystals of $\left.\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{dmio})\right]$ and $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Ph}_{2} \mathrm{SnCl}-\right.$ (dmio)], used in the X-ray structure determinations, were grown from MeOH solutions. Data collection and cell refinement employed Nicolet P3 software [14]. Data collection used 2θ scan rates of $5.33\left(I_{\mathrm{p}}<150\right)$ to 58.6

Fig. 2. Interactions within a layer of $\mathbf{6 b}$ molecules with centroids at $0<y<1 / 2$. Probability ellipsoids drawn at 40%. Symmetry operations; A: x, y, z; B: $1 / 2-x, 1 / 2-y, 1 / 2+z$; C: $1 / 2+x, 1 / 2-y, 1-z$; D: $1-x, y, 1 / 2-z$; E: $1+x ; y, z ; \mathrm{F}: 3 / 2-x, 1 / 2-y, 1 / 2+z$.
$\left(I_{\mathrm{p}}>2500\right)^{\circ} \min ^{-1}$, where I_{p} is the prescan intensity. Scan widths were $2.4-2.8^{\circ} 2 \theta$. Data reduction used the program, RDNIC [15]. Refinement was by least squares. All computations were performed on the SUN SPARCserver (unix operating system) at the University of Aberdeen. Structure solution and refinement software: SHELX86 [16] and SHELX76 [17]. Molecular graphics: ORTEX [18]. Software used to prepare the data for publication: XPUB [19].

4.2. $\mathrm{Me}_{2} \operatorname{Sn}(\mathrm{dmio})$

Absorption correction involved an empirical method based on psi scans [20]. All non-hydrogens were refined anisotropically. H -atoms were initially placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.95 \AA$ then refined subject to distance constraints such that $\mathrm{C}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ (within each methyl group) distances were constrained to be equal and in the ratio $1: 1.633$ (18 in all) to control the shape of the Me groups and $\mathrm{Sn} \cdots \mathrm{H}$ were fixed at $2.6395 \AA$ to control the orientation of the methyl groups relative to the $\mathrm{Sn}-\mathrm{C}$ bond. The $\mathrm{C}-\mathrm{H}$ bond distance and a common group $U_{\text {iso }}$ for H were included in the refinement to yield values of $1.102(5) \AA$ and $0.076(16) \AA^{2}$, respectively.

4.3. $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Ph}_{2} \mathrm{SnCl}(\right.$ dmio $\left.)\right]$

All non- H -atoms, except C of the disordered cation, were refined anisotropically. The nature of the disorder is such that the methylene C of the cation occupy two sets of sites $\mathrm{C}(16,18,20,22)$ and $\mathrm{C}(16 \mathrm{~A}, \mathrm{C} 18 \mathrm{~A}, \mathrm{C} 20 \mathrm{~A}$, C 22 A) with occupancies of $0.687(12)$ and $0.313(12)$, respectively. As a consequence no attempt was made to determine the positions of the alkyl H atoms of the cation. Phenyl H of the anion, however, were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and refined riding upon the C atom to which they were attached with a common $U_{\text {iso }}$ (final value of $0.091(9)$).

Crystal data and structure refinement details are listed in Table 1.

5. Results and discussion

5.1. Synthesis

The syntheses of $[\mathrm{Q}]\left[\mathrm{R}_{2} \mathrm{Sn}(\mathrm{dmio}) \mathrm{X}\right]$ (5) and $\left[\mathrm{R}_{2} \mathrm{Sn}(\mathrm{dmio})\right] 6$ are shown in Scheme 1. Two routes to 5 were used: (a) from reaction between $\mathrm{R}_{2} \mathrm{SnX}_{2}$ and $[\mathrm{Q}]_{2}\left[\mathrm{Zn}(\mathrm{dmio})_{2}\right]$ and (b) from halide/pseudohalide exchange reaction between $[\mathrm{Q}]\left[\mathrm{R}_{2} \mathrm{Sn}(\mathrm{dmio}) \mathrm{Cl}\right]$ and NaX .

Table 5
Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{6} \mathbf{b}^{\mathrm{a}}$

Bond lengths (\AA)			
S1-Sn	2.440(2)	$\mathrm{S} 4-\mathrm{Sn}$	2.487(2)
$\mathrm{C} 4-\mathrm{Sn}$	2.124(7)	C5-Sn	2.123(7)
C1-S1	1.750 (8)	C1-S2	1.746 (9)
C3-S2	$1.757(9)$	C2-S3	1.747(8)
C3-S3	1.729 (10)	C2-S4	1.729(9)
C3-O	$1.226(10)$	C2-C1	1.367(11)
$\mathrm{Sn}-\mathrm{O}^{\text {i }}$	2.654(6)	$\mathrm{Sn}-\mathrm{S} 4{ }^{\text {ii }}$	3.649(3)
Bond angles (${ }^{\circ}$)			
S4-Sn-S1	89.47(8)	$\mathrm{C} 4-\mathrm{Sn}-\mathrm{S} 1$	110.6(3)
$\mathrm{C} 4-\mathrm{Sn}-\mathrm{S} 4$	107.1(3)	$\mathrm{C} 5-\mathrm{Sn}-\mathrm{S} 1$	115.6(3)
C5-Sn-S4	102.8(3)	C5-Sn-C4	124.2(4)
$\mathrm{S} 1-\mathrm{Sn}-\mathrm{O}^{\text {i }}$	79.43(16)	$\mathrm{S} 4-\mathrm{Sn}-\mathrm{O}^{\text {i }}$	168.21(16)
$\mathrm{C} 4-\mathrm{Sn}-\mathrm{O}^{\text {i }}$	81.1(3)	$\mathrm{C} 5-\mathrm{Sn}-\mathrm{O}^{\text {i }}$	78.6(3)
$\mathrm{S} 4^{\mathrm{ii}}-\mathrm{Sn}-\mathrm{O}^{\mathrm{i}}$	126.46(16)	$\mathrm{S} 4{ }^{\mathrm{ii}}-\mathrm{Sn}-\mathrm{C} 4$	76.6(3)
S4 ${ }^{\text {iii-Sn-C5 }}$	75.2(3)	S4ii-Sn-S1	154.10(7)
S4 ${ }^{\text {iii-Sn-S2 }}$	96.96(15)	S4ii ${ }^{\text {iii }}$ - -S 4	64.78(8)
C1-S1-Sn	97.3(4)	C2-S4-Sn	97.1(3)
S2-C1-S1	116.4(5)	C2-C1-S1	127.5(7)
C2-C1-S2	116.1(6)	S4-C2-S3	116.7(5)
C1-C2-S3	116.4(6)	C1-C2-S4	126.8(6)
S3-C3-S2	113.3(5)	C3-S2-C1	96.9(4)
O-C3-S3	124.6(7)	O-C3-S2	122.0(7)
C3-S3-C2	97.3(4)		

${ }^{\text {a }}$ Symmetry operators: (i) $1 / 2-x, 1 / 2-y, z-1 / 2$; (ii) $-x, y, 1 / 2-z$.
Compounds (6) could also be obtained from $\mathrm{R}_{2} \mathrm{SnCl}_{2}$ and $[\mathrm{Q}]_{2}\left[\mathrm{Zn}(\mathrm{dmio})_{2}\right]$ if aqueous extractions were carried out to remove QX. As found for the analogous dmit complexes, $\mathbf{3}$ and $\mathbf{4}[7 \mathrm{a}, \mathrm{f}], \mathbf{5}$ could also be formed from 6 on reaction with QX. Conversely, 5 could be converted to 6 on aqueous solution extractions. Hence, in the preparations of $\mathbf{5}$, aqueous extractions to remove inorganic salts, were kept to a minimum.

5.2. $[Q]\left[R_{2} \operatorname{Sn} X(d m i o)\right] 5$

Compounds 5 were orange to red-brown in colour. They were considerably more soluble in coordinating
solvents (e.g. $\mathrm{Me}_{2} \mathrm{CO}$ or $\mathrm{Me}_{2} \mathrm{SO}$) than in non-coordinating solvents. (e.g. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or CHCl_{3}).

5.3. Solid state structure of (5b)

As indicated in Section 1, the structures of two compounds, $\mathbf{5 f}$ [8b and 5a [8c], have been reported in preliminary accounts. The atom arrangements of a third complex, $\mathbf{5 b}$ are shown in Fig. 1. This complex, like $\mathbf{5 f}$ and $\mathbf{5 a}$, exists as an ionic species, with the geometry at tin in the anion being trigonal bipyramidal. The axial sites in $\mathbf{5 b}$ are occupied by $\mathrm{Cl}[\mathrm{Sn}-\mathrm{Cl}=$ 2.524(2) A] and a dithiolate S atom, $\mathrm{S} 1[\mathrm{Sn}-\mathrm{S} 1=$ 2.626 (2) \AA] with $\mathrm{S} 1-\mathrm{Sn}-\mathrm{C} 1=165.4(1)^{\circ}$, see Table 2 for selected geometric parameters. The equatorial sites are occupied by the other dithiolate atom $\mathrm{S} 2[\mathrm{Sn}-\mathrm{S} 2=$ 2.463(2) A] and the two carbon atoms, $\mathrm{Sn}-\mathrm{C} 4=$ $2.141(7)$ and $\mathrm{Sn}-\mathrm{C} 10=2.150(7) \AA$. The $\mathrm{Sn}-\mathrm{Cl}$ bond length in $\mathbf{5 b}$ is comparable to the axial $\mathrm{Sn}-\mathrm{Cl}$ bond length in trigonal bipyramidal $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Ph}_{2} \mathrm{SnCl}(\mathrm{tdt})\right]$ [2.588(2) Å] [6b]. There are no interactions between cations and anions, however, there are weak $\mathrm{S} \cdots \mathrm{S}$ interactions between anions, within twice the van der Waals radius of $\mathrm{S}(1.85 \AA$) [21].

Comparison of the geometric parameters about tin in the three compounds, $\mathbf{5 a}, \mathbf{b}$ and \mathbf{f} : is available in Table 3. All three anions have distorted trigonal bipyramidal geometries with the SnSCCS metallocycles having envelope conformations with the flap at tin. There are relatively small ranges for the $\mathrm{Sn}-\mathrm{S}_{\mathrm{ax}}$ and $\mathrm{Sn}-\mathrm{S}_{\mathrm{eq}}$ bond lengths and the bite angles of the dmio ligands, all, in addition, being similar to the equivalent parameters in the dmit analogues 3 [7f]. However, other bond angles about tin do show some differences between the three structures of 5 , most noticeably for the equatorial- $\mathrm{Sn}-$ equatorial angles. While the sum of the three equato-rial- Sn -equatorial angles in each anion do sum up to ca. 360°, the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle for $\mathbf{5 a}\left[8 \mathrm{~b}\right.$] is at $138.0(6)^{\circ}$,

Fig. 3. Atom arrangement for 6b. Probability ellipsoids drawn at 40%. Symmetry operations: (i) $1 / 2-x ; 1 / 2-y, z-1 / 2$; (ii) $-x$, y, $1 / 2-z$.

Table 6
$\delta^{119} \mathrm{Sn}$ values for 4 and 6

R	$\mathrm{R}_{2} \mathrm{Sn}(\mathrm{dmio})\left[\mathrm{Me}_{2} \mathrm{CO}-d_{6}\right] \delta^{119} \mathrm{Sn}$	$\mathrm{R}_{2} \mathrm{Sn}\left(\mathrm{dmit)}\left[\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right] \delta^{119} \mathrm{Sn}[7 \mathrm{a}]\right.$	$\Delta \delta{ }^{119} \mathrm{Sn}^{\mathrm{a}}$
Me	-37.5	135.2	-172.7
Et	-18.2	166.5	-184.7
Bu	-22.0	161.5	-183.5
Ph	-235.9	-24.8	-211.1

${ }^{\mathrm{a}} \Delta \delta^{119} \mathrm{Sn}=\mathrm{R}_{2} \mathrm{Sn}(\mathrm{dmio})-\mathrm{R}_{2} \operatorname{Sn}(\mathrm{dmit})$.
more than 20° larger than those in the other two compounds [8c].

5.4. Spectra of $\mathbf{5}$

In the IR spectra in KBr , the range of $v(\mathrm{C}=\mathrm{C})$ values were $1451-1475$ and those for $v(\mathrm{C}=\mathrm{O})$ were $1660-1667$ and $1609-1614 \mathrm{~cm}^{-1}$. In the NMR spectra in $\mathrm{Me}_{2} \mathrm{SO}_{2^{-}}$ d_{6} solution, $\delta{ }^{13} \mathrm{C}(\mathrm{C}=\mathrm{C})$ and $\delta{ }^{13} \mathrm{C}(\mathrm{C}=\mathrm{O})$ were between $118-120$ and $191-193 \mathrm{ppm}$, respectively: the $\delta{ }^{13} \mathrm{C}(\mathrm{C}=\mathrm{C})$ values for 3 in $\mathrm{Me}_{2} \mathrm{CO}-d_{6}$ solution are at a somewhat lower field (in the range 129.7 and 131.7 ppm) [7f]. Comparison of the $\delta^{119} \mathrm{Sn}$ values of $\mathbf{3}$ and $\mathbf{5}$, listed in Table 4, indicates that the tin atoms in the dmio complexes are more shielded than in the dmit analogues. Both sets of $\delta^{119} \mathrm{Sn}$ values indicate five-coordinate tin species.

5.5. $\left[R_{2} \operatorname{Sn}(\right.$ dmio $\left.)\right]$ compounds 6

Neutral compounds 6 are orange in colour. They are also considerably more soluble in coordinating solvents than in non-coordinating solvents. This, plus the high m.p.s (between 178 and $200^{\circ} \mathrm{C}$), suggest that the $\mathrm{R}_{2} \mathrm{Sn}$ (dmio) compounds are aggregated in the solid state; this was confirmed by the X-ray diffraction study for $\mathrm{Me}_{2} \mathrm{Sn}$ (dmio).

5.6. Solid state structure of $\boldsymbol{\sigma} \boldsymbol{b}$

The structure consists of aggregated molecules, see Fig. 2. The major intermolecular interaction is an $\mathrm{Sn}-$ O interaction, $\left[\mathrm{Sn}-\mathrm{O}^{\mathrm{i}}=2.654(6) \AA\right]$, which links the molecules into chains parallel to c, with weaker interactions, $\left[\mathrm{Sn}-\mathrm{S} 4^{\mathrm{ii}}=3.649(3)\right.$ and $\left.\mathrm{S} 4-\mathrm{S} 4^{\mathrm{ii}}=3.430(3) \AA\right]$, linking the chains into layers: symmetry operators, i: $1 / 2-x, 1 / 2-y, z-1 / 2$; ii: $-x, y 1 / 2-z$. In addition, there are $\mathrm{S} 1-\mathrm{S} 3^{\mathrm{i}}[3.595(3) \AA$] interactions within the chains. There are no interactions between the layers at distances less than the sum of appropriate the van der Waals radii $[\mathrm{Sn}=2.20, \mathrm{~S}=1.85$ and $\mathrm{O}=1.50 \AA$] [21]. The intermolecular $\mathrm{Sn}-\mathrm{O}$ and $\mathrm{Sn}-\mathrm{S}$ separations are considerably longer than single covalent bonds, e.g. $1.940(1) \AA$ in $\left(\mathrm{Me}_{3} \mathrm{Sn}\right)_{2} \mathrm{O}$ [22], and 2.39-2.44 \AA for four-coordinate $\mathrm{R}_{3} \mathrm{SnSR}$ compounds [23], but are
within the sum of the van der Waals radii [21] of 3.70 and $4.05 \AA$ for Sn / O and Sn / S, respectively. The $\mathrm{Sn}-$ $S 4{ }^{\text {ii }}$ interactions involve thiolate S atoms. Similar weak $\mathrm{Sn}-\mathrm{S}$ interactions $(\mathrm{Sn}-\mathrm{S}=3.69 \AA$) have been determined in $\mathrm{Bu}_{2} \mathrm{Sn}(\mathrm{edt})$ [1e]: two such interactions link each molecule of $\mathrm{Bu}_{2} \mathrm{Sn}(\mathrm{edt})$ to neighbouring molecules [1e]. In both $\mathrm{Bu}_{2} \mathrm{Sn}$ (edt) and $\mathrm{Me}_{2} \mathrm{Sn}$ (dmio), $\mathrm{Sn}_{2} \mathrm{~S}_{2}$ rings arise as central features of the structures. In $\mathrm{Me}_{2} \mathrm{Sn}$ (edt), a single but stronger $\mathrm{Sn}-\mathrm{S}$ interaction $\left[\mathrm{Sn}-\mathrm{S}^{\mathrm{i}}=3.18 \AA\right.$] [1a] links molecules into chains.

Table 5 lists bond lengths and angles for $\mathbf{6 b}$. With the intermolecular $\mathrm{Sn}-\mathrm{O}$ and $\mathrm{Sn}-\mathrm{S}$ interactions, the tin centre becomes six-coordinate, see Fig. 3. The arrangement of the six groups about tin is far from regular, a description as a highly distorted octahedral complex is barely acceptable since the trans-angles are 124.2(4), 154.10(7) and $168.21(16)^{\circ}$. Ignoring the weaker $\mathrm{Sn}-\mathrm{S}$ interaction, the geometry at tin would be slightly distorted trigonal bipyramidal, with the quasi axial sites occupied by O and a dithiolate S atom, (S4), $(\mathrm{Sn}-\mathrm{S} 4=$ $2.687(2) \AA$ and $\left.o-\mathrm{Sn}-\mathrm{S}(4)=168.21(16)^{\circ}\right)$. The other dithiolato S atom (S 1) in $\mathrm{Me}_{2} \mathrm{Sn}$ (dmio) forms a slightly stronger bond to tin $(\mathrm{Sn}-\mathrm{S} 1=2.440(2) \AA$). The difference in the intramolecular $\mathrm{Sn}-\mathrm{S}$ bond lengths is noticeably less than that found in $\mathbf{5}$. The bite angle of the dithiolate chelate group in $\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{dmio})$ is, at $89.47(8)^{\circ}$, slightly greater than those found in 5 (between $86.2(1)$ and $\left.86.47(6)^{\circ}\right)$, this is matched by the $\mathrm{Sn}-\mathrm{S}$ bond lengths in $\mathrm{Me}_{2} \mathrm{Sn}$ (dmio) being on average shorter than in 5.

The compounds, $\mathrm{Et}_{2} \mathrm{Sn}$ (dmit) $[7 \mathrm{~g}]$ and $\mathrm{PhMeSn}(\mathrm{dmit})$ [7a] contain five-coordinate tin atoms with trigonal bipyramidal geometries in the solid state, as a consequence of intermolecular interactions between the tin centres and thione sulfur atoms $(\mathrm{Sn}-\mathrm{S}(=\mathrm{C})=3.042(5)$ and 3.139 (1) \AA, respectively); neither molecule exhibits intermolecular tin-thiolate bonding.

A tin centre in a four-coordinate diorganotin dithiolate is clearly coordinatively unsaturated and will coordinate, at least in the solid state, with available donor groups, unless other factors, e.g. steric hindrance, intervene. Complexes of $\mathrm{R}_{2} \mathrm{Sn}$ (dithiolate) with halide ions and with nitrogen donors, D , to give $\left[\mathrm{R}_{2} \mathrm{SnX}\right.$ (dithiolate $)]^{-}[4 \mathrm{a}, 6 \mathrm{~b}, 7 \mathrm{a}, \mathrm{b}, \mathrm{f}]$ and $\left[\mathrm{R}_{2} \mathrm{Sn}(\right.$ dithiolate $\left.) \cdot \mathrm{D}\right][1 \mathrm{c}, 3$, 7 a], respectively, have been isolated for various dithio-
lates. In the estertin compounds, $\left(\mathrm{RO}_{2} \mathrm{CCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{Sn}$ (dmio) (7) [8a] and $\left(\mathrm{RO}_{2} \mathrm{CCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{Sn}(\mathrm{dmit})(\mathbf{8})$ [7d], the additional coordination, in both solution and in the solid state, is with the two intramolecular carbonyl groups, while in the simpler dithiolates, $\mathrm{R}_{2} \mathrm{Sn}(\mathrm{edt})(\mathrm{R}=\mathrm{Me}$ or Bu$)$, additional coordination in the solid state, as mentioned earlier, concerns dithiolate S atoms of neighbouring molecules. On dissolution, however, the intermolecular associations in $\mathrm{R}_{2} \mathrm{Sn}(\mathrm{edt})$ are broken with the formation of four-cordinate compounds [1e, 2a]. The bulkier ${ }^{t} \mathrm{Bu}_{2} \mathrm{Sn}(\mathrm{edt})$ is monomeric in both the solid state and in solution [1f].

$$
\begin{aligned}
& \text { 7: } \mathrm{E}=\mathrm{O} \\
& 8: \mathrm{E}=\mathrm{S}
\end{aligned}
$$

Despite the differing intermolecular interactions in $\mathbf{4}$ and $\mathbf{6}$, the two sets of monomers have similar structures, with the chelate bite angles, the intramolecular $\mathrm{Sn}-\mathrm{S}$ bond lengths, and geometric parameters of the metallocyclic [SnSCCS] units in $\mathbf{4}$ and $\mathbf{6}$ being very similar.

5.7. Spectra

In the IR spectra of $\mathbf{6}$ in $\mathrm{KBr}, v(\mathrm{C}=\mathrm{C})$ occurs at $1452-1461 \mathrm{~cm}^{-1}$ and $v(\mathrm{C}=\mathrm{O})$ at $1662-1673$ and $1610-$ $1615 \mathrm{~cm}^{-1}$; in the NMR spectra in $\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, \delta(\mathrm{C}=\mathrm{C})$ and $\delta(\mathrm{C}=\mathrm{O})$ are in the ranges $116.7-118.8$ and 191.3192.6 ppm , respectively. Values for the $\mathrm{C}=\mathrm{C}$ unit in the analogous dmit compounds, 4, were $v(\mathrm{C}=\mathrm{C})=1433-$ $1456 \mathrm{~cm}^{-1}$ and $\delta(\mathrm{C}=\mathrm{C}) 129.5-130.3 \mathrm{ppm}$ in $\mathrm{Me}_{2} \mathrm{CO}$ solution [7a]. Again, $\delta(\mathrm{C}=\mathrm{C})$ values for the dmio compounds appear at higher field.
The solution $\delta^{119} \mathrm{Sn}$ values of 6 in $\mathrm{Me}_{2} \mathrm{SO}$ solution are shown in Table 6. The values suggest five-coordinate tin centres, i.e. the $\mathrm{Sn}-\mathrm{O}$ interactions still persist in solution. The weaker intermolecular interactions are probably absent as found with $\mathrm{R}_{2} \mathrm{Sn}(\mathrm{edt})$ in solution. Comparison of the solution $\delta^{119} \mathrm{Sn}$ values of 6 and $\mathbf{4}$ in Table 6 indicate that the dmio componds exhibit the higher field values (by between 170 and 211 ppm). The differences in the $\delta^{119} \mathrm{Sn}$ values, $\left(\Delta \delta^{19} \mathrm{Sn}=\right.$ $\left.\delta^{19} \mathrm{Sn}\left[\mathrm{R}_{2} \mathrm{Sn}(\mathrm{dmio})\right]-\delta^{119} \mathrm{Sn}\left[\mathrm{R}_{2} \mathrm{Sn}(\mathrm{dmit})\right]\right)$ reflect both the differences in the dithiolate units and the intermolecular associations. The $\delta^{119} \mathrm{Sn}$ values for the six coordinate species, 7 [8a] and $\mathbf{8}$ [7d], are 48.2 and 89.7 ppm , respectively, in CDCl_{3} solution. From these values and $\delta^{119} \mathrm{Sn}$ values for $\mathbf{3}$ and $\mathbf{5}$, it can be estimated
that ca. $20-40 \mathrm{ppm}$ of the differences in $\delta^{119} \mathrm{Sn}$ values of $\mathbf{6}$ and $\mathbf{4}$ is attributable to the differences between the dithiolate ligands, the remainder being due to the differences in the intermolecular donor groups.

References

[1] (a) M. Dräger, Z. Anorg. Allg. Chem. 477 (1981) 154. A.C. Secco, J. Trotter, Acta Crystallogr. Sect. C 39 (1983) 45. (b) R.C. Poller, J.N.R. Ruddick, J. Organomet. Chem. 60 (1973) 87. (c) L.M. Epstein, D.K. Straub, Inorg. Chem. 4, (1965) 1551. (d) R.R. Holmes, S. Shafieezad, J.M. Holmes, R.O. Day, Inorg. Chem. 27 (1988) 1232. (e) A.G. Davies, S.D. Slater, D.C. Povey, G.W. Smith, J. Organomet. Chem. 352 (1988) 283. (f) P.A. Bates, M.B. Hursthouse, A.G. Davies, S.D. Slater, J. Organomet. Chem. 363 (1989) 45. (g) G. Bandoli, U. Casellato, V. Peruzzo, G. Plazzogna, J. Organomet. Chem. 411 (1991) 99. G. Bandoli, A. Dolmella, V. Peruzzo, G. Plazzogna, Inorg. Chim. Acta. 193 (1992) 185. (h) V. Pejchal, J. Holecek, M. Nadvornik, A. Lycka, Coll. Czech. Chem. Commun. 60 (1995) 1492. (i) E.W. Abel, D.B. Brady, J. Chem. Soc. (1965) 1192.
[2] (a) E.W. Abel, S.K. Bhargava, K.G. Orrell, V. Sik, J. Chem. Soc. Dalton Trans. (1982) 2073. (b) R.C. Poller, J.A. Spillman, J. Chem. Soc. A (1966) 958.
[3] E.W. Abel, C.R. Jenkins, J. Chem. Soc. A (1967) 1344.
[4] (a) C.W. Allen, D.B. Brown, Inorg. Chem. 13 (1974) 2020. (b) E.S. Breitschneider, C.W. Allen, Inorg. Chem. 12 (1974) 623. (c) R.O. Day, J.M. Holmes, S. Shafieezed, V. Chandrasekhar, R.R. Holmes, J. Am. Chem. Soc. 110 (1988) 5377.
[5] V. Peruzzo, G. Plazzogna, G. Bandoli, J. Organomet. Chem. 415 (1991) 335.
[6] (a) K. Gratz, F. Huber, A. Silvestri, G. Alonzo, R. Barbieri, J. Organomet. Chem. 290 (1985) 41. (b) A.C. Sau, R.O. Day, R.R. Holmes, Inorg. Chem. 20 (1981) 3076.
[7] (a) S.M.S.V. Doidge-Harrison, J.T.S. Irvine, A. Khan, G.M. Spencer, J.L. Wardell, J. Organomet. Chem. 516 (1996) 199. (b) S.M.S.V. Doidge-Harrison, R.A. Howie, J.T.S. Irvine, G.M. Spencer, J.L. Wardell, J. Organomet. Chem. 414 (1991) C5. (c) A. Khan, G. Ferguson, J.N. Low, J.L. Wardell, Acta Crystallogr. Sect. C 54 (1998) 1399. (d) H. Buchanan, R.A. Howie, A. Khan, G.M. Spencer, J.L. Wardell, J.H. Aupers, J. Chem. Soc. Dalton Trans. (1996) 541. (e) S.M.S.V. Doidge-Harrison, R.A. Howie, J.T.S. Irvine, G.M. Spencer, J.L. Wardell, J. Organomet. Chem. 463 (1992) 23. (f) J.H. Aupers, Z.H. Chohan, P.J. Cox, S.M.S.V. Doidge-Harrison, R.A. Howie, A. Khan, G.M. Spencer, J.L. Wardell, Polyhedron 17 (1998) 4475. (g) G.M. Spencer, PhD thesis, University of Aberdeen, Scotland, 1994.
[8] (a) R. Balasubramanian, Z.H. Chohan, S.M.S.V. Doidge-Harrison, R.A. Howie, J.L. Wardell, Polyhedron 16 (1997) 4283. (b) Z.H. Chohan, P.J. Cox, J.L. Wardell, J. Chem. Crystallogr. 27 (1997) 1317. (c). Z.H. Chohan, G. Ferguson, J.N. Low, P.R. Meehan, J.L. Wardell, Acta Crystallogr. Sect. C 54 (1998) 1401.
[9] T. Sato, J. Otero, H. Nozaki, J. Org. Chem. 58 (1993) 4971.
[10] (a) J.-I. Yamada, Y. Nishimoto, S. Tanaka, R. Nakanishi, K. Hagiya, H. Anzai, Tetrahedron Lett. 36 (1995) 9509. (b) J.-I. Yamada, Y. Amano, S. Takasaki, R. Nakanishi, K. Matsumato, S Satoki, H. Anzai, J. Am. Chem. Soc. 113 (1995) 1149. (c) J.-I. Yamada, S. Satoki, S. Mishima, N. Akashi, K. Takahashi, N. Masuda, Y. Nishimoto, S. Takasaki, H. Anzai, J. Org. Chem. 61 (1996) 3987.
[11] L. Valade, J.P. Legros, M. Bousseau, M. Garbauskas, J. Chem. Soc. Dalton Trans. (1985) 783.
[12] Z.H. Chohan, R.A. Howie, J.L. Wardell, R. Wilkens, S.M.S.V. Doidge-Harrison, Polyhedron 16 (1997) 2689.
[13] H. Gilman, L.A. Gist, J. Org. Chem. 22 (1957) 368.
[14] Nicolet P3/R3 Data Collection Operator's Manual, Nicolet XRD Corporation, 10061 Bubb Road, Cupertino, CA 95014, 1980.
[15] R.A. Howie, RDNIC, Data Reduction Program for Nicolet P3/R3 Diffractometer. University of Aberdeen, Scotland, 1980.
[16] G.M. Sheldrick, Acta Crystallogr. Sect. A 46 (1990) 467.
[17] G.M. Sheldrick. Shelx-76, Program for crystal structure determination, University of Cambridge, UK, 1976.
[18] P. McArdle, J. Appl. Crystallogr. 27 (1995) 438.
[19] J.N. Low, XPUB, Program for the preparation of tabular crystal-
lographic data, University of Dundee, Scotland, 1980.
[20] A.C.T. North, D.C. Philips, F.C. Mathews, Acta Crystallogr. Sect A 24 (1968) 351.
[21] J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry, 4th ed., Harper Collins, New York, NY.
[22] L.V. Vilkov, N.A. Tarasenko, J. Struct. Chem. 10 (1969) 979.
[23] (a) G.D. Andreetti, G. Bocelli, G. Calestani, P. Sgarabotto, J. Organomet. Chem. 273 (1984) 31. (b) P.L. Clarke, M.E. Cradwick, J.L. Wardell, J. Organomet. Chem. 63 (1973). (c) K.C. Molloy, T.G. Purcell, D. Cunningham, P. McCardle, T. Higgins, Appl. Organomet. Chem. 1 (1987) 119.

[^0]: * Corresponding author. Fax: +44-1224-272921; e-mail: j.wardell@abdn.ac.uk.

[^1]: ${ }^{\text {a }}$ For 5b: $\mathrm{Q}=\mathrm{NEt}_{4} ; \quad \mathrm{R}=\mathrm{Ph} ; \mathrm{X}=\mathrm{Cl}: \mathrm{C}(\mathrm{A})=\mathrm{C} 4 ; \mathrm{C}(\mathrm{B})=\mathrm{C} 10$: $\mathrm{S}(\mathrm{eq})=\mathrm{S} 4 ; \mathrm{S}(\mathrm{ax})=\mathrm{S} 1$, in Fig. 1 and Table 2.

